liana.method.bivariate.__call__¶
- bivariate.__call__(mdata: MuData | AnnData, local_name: str | None = 'cosine', global_name: None | str | list = None, resource_name: str | None = None, resource: DataFrame | None = None, interactions: list | None = None, connectivity_key: str = 'spatial_connectivities', mask_negatives: bool = False, add_categories: bool = False, n_perms: int | None = None, seed: int = 1337, nz_prop: float = 0.05, remove_self_interactions: bool = True, complex_sep: None | str = '_', xy_sep: str = '^', verbose: bool = False, **kwargs) AnnData | DataFrame | None ¶
A method for bivariate local spatial metrics.
- Parameters:
- mdata
MuData (multimodal) data object.
- local_name
Name of the local function to use for the analysis. Passing None will return only the Global scores.
- global_name
Name or names (list) of the global function(s) to use for the analysis. Passing None will not calculate any global scores
- interactions
List of tuples with ligand-receptor pairs [(ligand, receptor), …] to be used for the analysis. If passed, it will overrule the resource requested via resource and resource_name.
- resource
A pandas dataframe with [ligand, receptor] columns. If provided will overrule the resource requested via resource_name
- resource_name
Name of the resource to be used for ligand-receptor inference. See li.rs.show_resources() for available resources.
- connectivity_key
Key in adata.obsp that contains the spatial connectivity matrix. Default is ‘spatial_connectivity’.
- mask_negatives
Whether to mask negative-negative (low-low) or uncategorized interactions.
- add_categories
Whether to add categories about the local scores.
- n_perms
Number of permutations for the permutation test. If None, no p-values are computed.
- seed
Random seed for reproducibility.
- nz_prop: float
Minimum proportion of non-zero values for each features. For example, if working with gene expression data, this would be the proportion of cells expressing a gene. Both features must have a proportion greater than nz_prop to be considered in the analysis.
- complex_sep: str
Separator to use for complex names.
- xy_sep: str
Separator to use for interaction names.
- remove_self_interactions: bool
Whether to remove self-interactions. True by default.
- verbose
Verbosity flag.
- **kwargsdict, optional
Additional keyword arguments: - For AnnData:
x_name
- Name of the x-variable. If passing a resource dataframe, this should match the first column. By default: ‘ligand’.
y_name
Name of the y-variable. If passing a resource dataframe, this should match the second column. By default: ‘receptor’.
- For MuData:
x_mod
- Name of the modality to use for the x-axis.
y_mod
- Name of the modality to use for the y-axis.
x_name
- Name of the x-variable. If passing a resource dataframe, this should match the first column. By default: ‘x’.
y_name
- Name of the y-variable. If passing a resource dataframe, this should match the second column. By default: ‘y’.
- x_use_raw: bool
Whether to use the raw counts for the x-mod.
- y_use_raw: bool
Whether to use the raw counts for y-mod.
- x_layer: str
Layer to use for x-mod.
- y_layer: str
Layer to use for y-mod.
- x_transform: bool
Function to transform the x-mod.
- y_transform: bool
Function to transform the y-mod.
- Returns:
- An AnnData object, (optionally) with multiple layers which correspond categories/p-values, and the
- actual scores are stored in .X. Moreover, global stats are stored in
.var
.